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Through the years, we have seen many attacks exploiting web caches to hijack sensitive
information or store malicious payloads.
However, as CDNs became more popular, new discrepancies between proprietary URL parsers
prove that we have only seen the tip of the iceberg.

In this paper will explore how different HTTP servers and proxies behave when parsing specially
crafted URLs and explore ambiguities in the RFC that lead to path confusion. It will also introduce a
set of novel techniques that can be used to leverage parser discrepancies and achieve arbitrary
web cache poisoning and deception in countless websites and CDN providers.
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Background

Web caches
Web caches have been around since the beginning of the internet. This technology works by
fingerprinting requests using a key, which in most cases will be built using some or all parts of the
requested URL, and mapping the key with stored static responses.

In recent years, most productive systems incorporate caching by setting Content Delivery Networks
(CDNs) with providers like CloudFlare, Akamai, or CloudFront. CDNs can be seen as a network of
web cache proxies that are distributed around the globe. They serve static responses, increasing
the efficiency and scalability of a system.

This paper focuses on URL parsing discrepancies that exist between different application servers
and CDN proxies, but the same techniques can be applied to any type of web cache, including
those integrated in the origin server itself.

Poisoning and deception
As web caches play a crucial role in modern systems, researchers have looked for ways to exploit
them to store dynamic information. This information could be used to obtain sensitive data or
deliver malicious payloads. These attacks typically target one of two processes: key generation or
cache rule analysis.

Calculating the key is crucial as every request with the same fingerprint should generate the same
response, regardless of when it was sent or what additional information it contains (like body or
extra headers). If the response varies based on the value of a specific header, then that value
should be part of the key. Storing a message with a malicious payload intended to match an
incorrect key is called web cache poisoning1.

Cache rules are designed to recognize if a response is static and should be stored. Failing to cache
a static resource can affect performance, but storing a dynamic response with sensitive information
meant for an authenticated user can be devastating for an application. If an attacker can craft a
malicious request that retrieves and caches user data, they may be able to hijack tokens and API
keys, potentially leading to a full account takeover. This is known as web cache deception2.

https://portswigger.net/web-security/web-cache-poisoning
https://portswigger.net/web-security/web-cache-deception


URL discrepancies
To evaluate cache rules, calculate cache keys, and map endpoint handlers, the origin server must
extract the absolute path of the requested resource. This is done by parsing the URL using path
delimiters and normalization.

If the cache and application server’s parsers are different, it may be possible to use a discrepancy
to change the meaning of the URL. This may enable you to control which responses are stored and
the key that is used to access them.

Delimiters
The URL RFC defines certain characters as delimiters, for example the semicolon or question
mark. However the specification is quite permissive and allows each implementation to add custom
characters to this list.

This research showed that many popular frameworks and HTTP servers use different characters as
delimiters. This can create path confusion between the origin server and the cache parser.

Origin delimiters

The following custom delimiters are used in various application servers and frameworks:

Semicolon in Spring: In many Java frameworks, including Spring, the semicolon is used as
a delimiter to include matrix variables. Matrix variables can be included in each path segment
and aren't interpreted as part of the absolute path.

URL: /MyAccount;var1=val → Path: /MyAccount

URL: /hello;var=a/world;var1=b;var2=c → Path: /hello/world

Dot in Rails: Ruby on Rails allows the client to send a path with a formatter extension, which
defines the view returned in the response. This is used to return different responses with
different content types. If no extension is used or the extension isn't recognized by the server,
the default HTML view is returned. Therefore the dot character can act as a path delimiter.

URL: /MyAccount.html → Path: /MyAccount (default HTML view)

URL: /MyAccount.css → Path: /MyAccount (CSS view or error if not present)

URL: /MyAccount.aaaa → Path: /MyAccount (default HTML view)

Null encoded byte in OpenLiteSpeed: This HTTP server uses the null encoded byte as a
classic delimiter to truncate the path.

URL: /MyAccount%00aaa → Path: /MyAccount

Newline encoded byte in Nginx: When Nginx is configured to rewrite the request path, the
encoded newline byte is used as a path delimiter. The rewrite rule must map the prefix or the
URL and not the entire pathname (which is common in Nginx).

Rule: rewrite /user/(.*) /account/$1 break;

URL: /users/MyAccount%0aaaa → Path: /account/MyAccount



Detecting origin delimiters

1. Identify a non-cacheable request. Look for a request with a method that isn't idempotent,
such as POST, or a response with a Cache-Control: no-store or Cache-Control:
private header. The response (R0) will be used to compare the behavior of interesting
characters in the URL.

2. Send the same request, only this time append a random suffix at the end of the path, for
example, if the original path was /home send a request to /homeabcd. If the response (R1)
is the same as R0, repeat step 1 and 2 with a different endpoint.

3. Send the same request as step 2, but include a potential delimiter before the random suffix. If
the delimiter being tested is $, the path should look like /home$abcd. Compare this
response (R2) with the base one (R0).
If the messages are identical, the character or string is used as a delimiter.

To test a number of possible delimiters at once, you can use Burp Intruder with a wordlist that
includes all ASCII characters. Be sure to test both unencoded and URL-encoded versions of the
characters.

Detecting cache delimiters

Cache servers often don't use delimiters aside from the question mark. It's possible to test this
using a static request and response:

1. Identify a cacheable request by looking for evidence that the response is retrieved from the
cache. For example, by response time analysis, or by looking for an X-Cache header with
the value hit. This response (R0) will be used to compare the behavior of interesting
characters in the URL.

2. Send the same request with a URL path suffix followed by the possible delimiter and a
random value.

GET /static-endpoint<DELIMITER><Random>

Compare the response with R0. If the messages are identical, the character or string is used
as a delimiter.

Normalization
URL parsers are used by both the cache and origin server to extract paths for endpoint mapping,
cache keys, and rules. First, path delimiters are identified to locate the start and end of the
pathname. Once the path is extracted, it's normalized to its absolute form by decoding characters
and removing dot-segments.

Encodings

Sometimes, a delimiter character needs to be sent for interpretation by the application rather than
the HTTP parser. For such cases, the URI RFC defines URL encoding, which allows characters to
be encoded to avoid modifying the meaning of the pathname.

Many HTTP servers and proxies including Nginx, Node, CloudFlare, CloudFront and Google Cloud
decode certain delimiter characters before interpreting the pathname. To make things worse, this
process is inconsistent. This means that the same URL will have a different meaning in the most
popular CDNs and origin servers even without any custom configuration.



In addition, the RFC doesn't specify how a request should be forwarded or rewritten. Many proxies
decode the URL and forward the message with the decoded values. If this occurs, the next parser
may use the decoded characters as delimiters. Therefore, if the following request is received by a
proxy, the %3F character will be converted to a question mark symbol

"/myAccount%3Fparam" → "/myAccount?param"

There are also many other encodings supported by different cache proxies. Even though most of
them are not used by default, it is possible to configure CDNs like CloudFlare or CloudFront to
apply custom transformations and decode the path for caching or access control purposes.

Detecting decoding behaviors

To test if a character is being decoded, compare a base request with its encoded version. For
example:

/home/index → /%68%6f%6d%65%2f%69%6e%64%65%78

Note: It might be useful to encode each character individually, as sometimes specific characters
are not decoded (like the slash or other reserved characters).

If the response is the same as the base response and wasn't obtained from the cache (no cache hit
header), the origin server decodes the path before using it. If the response is cacheable, it's
possible to detect the cache parser's decoding behavior. Send the original request followed by the
encoded version. If both responses contain the same cache headers, it means that the second one
was obtained from the proxy, and the key was decoded before being compared.

Dot-segment normalization

The URI RFC also defines how to handle dot-segments in a URL and provides a simple algorithm
to normalize the path. While this feature is crucial for referencing any resource from a relative path,
it's also the source of many vulnerabilities.

It's possible to exploit dot-segment normalization by leveraging the discrepancies between parsers
to modify the behavior of the cache rules and obtain crafted keys. Even popular HTTP servers like
Apache and Nginx resolve URLs completely differently, meaning it is impossible to use the same
cache proxy without having a path confusion vulnerability.

Detecting dot-segment normalization

The following techniques can be used to detect dot-segment normalization at both the cache and
the origin server. These tests can be extended using encoded path traversal payloads to know if a
special decoding is applied. For this, use the same request / responses and replace the dot-
segments with the encoded version.

To detect normalization in the origin server, issue a non-cacheable request (or a request with a
cache buster) to a known path, then send the same message with a path traversal sequence:

GET /home/index?cacheBuster

GET /aaa/../home/index?cacheBuster or GET /aaa\..\home/index?cacheBuster

If the responses are identical, this means that the path is normalized before it's mapped with a
resource. This can either happen at the origin server or before being forwarded by a proxy. Either
way, the dot-segment is resolved and can be used to reference an existing resource.



To detect normalization at the web cache, repeat the same process but with a cacheable response
and compare the X-Cache and Cache-Control headers to verify if the resource was obtained
from the cache memory.

Normalization discrepancies

The following tables illustrate how different HTTP servers and web cache proxies normalize the
path /hello/..%2fworld. Some resolve the path to /world, while others don't normalize it at
all.



Arbitrary Web Cache Deception
When the web cache receives a response from the origin server, it must decide if the resource is
static and should therefore be stored. This involves applying predefined, customizable rules to the
request and response.

This section focuses on rules that use the URL to determine if a response should be cached. These
are popular in production environments and most CDNs include some of these rules by default.

It's possible to use parsing discrepancies to exploit cache rules, to store dynamic responses and
hijack sensitive information that was generated for a victim.
A detailed explanation of how to use discrepancies in URL mapping to create path confusion can
be found in Omer Gil’s white paper Web cache deception attack3.

This white paper focuses on other types of discrepancies, which can be exploited to hijack any
arbitrary response, not only those with special endpoint mapping at the origin server.

Limitations
Since the attacker needs to generate a link that's used by a victim's browser, the payload must
contain safe URL characters only - those the browser won't encode before sending.

To visualize this scenario, consider the browser as a proxy that rewrites the request URL by
encoding certain characters and removing segments.

Static extensions
Most CDN providers, such as CloudFlare and Akamai, store responses for resources with static
extensions. This means that if the requested path ends with a string like .js or .css the cache proxy
treats the response as static. It stores the response and uses it to serve other clients that request
the same path.

Each CDN or cache proxy defines its own list of recognized static extensions. The image below
shows those listed by CloudFlare:

Exploiting static extensions

When a character is used as a delimiter by the origin server but not the cache, it's possible to
include an arbitrary suffix to trigger a cache rule and store any sensitive response.

For example, if the dollar sign character is a delimiter in the origin server but not the proxy, the
following link stores the response to /myAccount, allowing an attacker to hijack sensitive
information:

https://www.blackhat.com/docs/us-17/wednesday/us-17-Gil-Web-Cache-Deception-Attack-wp.pdf


Cache Proxy Origin Server

/myAccount$a.css /myAccount$a.css

You can also use the same technique with an encoded character or string. This is useful when the
origin server decodes a delimiter before parsing the URL, or if the path is rewritten by the cache
before forwarding the request. For example, the unencoded hashtag symbol wouldn't work for
cache deception as its not sent by the browser, but if it's encoded it can be used for an exploit:

Browser Cache Proxy Origin Server

/myAccount%23a.css /myAccount%23a.css /myAccount#a.css

You can use a variation of this attack to exploit a discrepancy from a forwarding transformation. If
multiple parsers rewrite the request, we can attack a specific cache proxy of the chain by applying
multiple encodings and/or delimiters:

Load Balancer Cache Proxy Origin Server

/myAccount%25%32%33a.css /myAccount%23a.css /myAccount#a.css

Static directories
A popular rule implemented in all CDNs allows the user to create rules that match a custom URL
path prefix. This can be used to let the web cache know that every resource in a specific directory
is immutable and should be stored, no matter the resource name or extension.
Some common examples of static directories are:

/static

/assets

/wp-content

/media

/templates

/public

/shared

Exploiting static directories with delimiters

If a character is used as a delimiter by the origin server but not by the cache and the cache
normalizes the path before applying a static directory rule, you can hide a path traversal segment
after the delimiter, which the cache will resolve:

GET /<Dynamic_Resource><Delimiter><Encoded_Dot_Segment><Static_Directory>

It's important to encode the dot-segment. Otherwise the victim’s browser will resolve it and won't
forward the original malicious path.



Browser Cache Proxy Origin Server

/myAccount$/..%2Fstatic/any /static/any /myAccount

Amazon CloudFront, Microsoft Azure, and Imperva normalize the path before evaluating the cache
rules by default.

Exploiting static directories with normalization

When the origin server normalizes the path before mapping the endpoint and the cache doesn't
normalize the path before evaluating the cache rules, you can add a path traversal segment that
will only be processed by the origin server:

GET /<Static_Directory><Encoded_Dot_Segment><Dynamic_Resource>

Browser Cache Proxy Origin Server

/static/..%2FmyAccount /static/..%2FmyAccount /myAccount

Cloudflare, Google Cloud, and Fastly don't normalize the path before evaluating the cache rules. If
the origin server normalizes the path before mapping the request with an endpoint handler, such as
Nginx, Microsoft IIS and OpenLiteSpeed, it is possible to exploit any static directory rule.

Another normalization discrepancy arises when combining Microsoft IIS with any web cache that
doesn't convert backlashes. These caches interpret encoded backslashes as regular slashes.
Since no tested CDN recognizes this transformation, IIS is vulnerable when used with such
products.

Cache Proxy Origin Server

/static/..%5CmyAccount /static/..\myAccount → /myAccount

Static files
Some files, like /robots.txt, /favicon.ico, and /index.html, might not be in a static
directory or have a static extension but are expected to be immutable in every website. To store
these files it is possible to create a cache rule that looks for an exact match of the filename in the
path. CDNs like CloudFlare have this rule by default and always store responses for robots.txt
or favicon.ico.

Exploiting static files

To exploit static file rules it is possible to use the same technique as for static directories when
there is normalization at the frontend and a delimiter at backend. In this case, the static directory is
replaced by the filename and a cache buster to avoid hitting a cached resource:

GET /<Dynamic_Resource><Delimiter><Encoded_Dot_Segment><Static_File>



Browser Cache Proxy Origin Server

/myAccount/..%2Frobots.txt /robots.txt /myAccount



Arbitrary Web Cache Poisoning
When a response is considered static, it's stored in the cache using a key that is derived from the
original request. Any future request with the same key will be served with the stored resource.

Keys are usually generated using the URL and host header. They can be customized to use other
headers or request elements.

In classic web cache poisoning, the attacker attempts to store a malicious response using a URL
key that is requested by users while they navigate the vulnerable website. The more frequently the
path is visited, the more victims will be affected by the malicious payload. You can read more about
finding web cache poisoning vulnerabilities in James Kettle's research Practical Web Cache
Poisoning4 and Web Cache Entanglements: Novel pathways to poisoning5.

The attack is limited, as in many cases the poisoned path is not controlled by the attacker and user
interaction is required. For example, consider a URL that is never visited, either because it requires
a specific parameter such as /home?param=XSS, or because the path itself contains the payload
/<script>alert()</script>

However, combining path confusion with a web cache poisoning vulnerability could allow you to
modify the cache key and poison a highly requested resource, like the website's homepage. In this
case, there's no limitation on the characters that can be used, as the attacks don't require user
interaction, which means that the payload can be sent through an HTTP editor/repeater like Burp
Suite.

Key normalization
Normalizing a URL is usually considered a safe action that helps to obtain the absolute path of a
requested resource. However, resolving dot-segments and encodings in a cache key could allow
an attacker to poison arbitrary resources if the origin server is not interpreting the path in the same
way.

All the following attacks assume that the URL is normalized before generating the cache key. This
can be configured in most CDNs and is a default behavior in Microsoft Azure and Imperva.

Exploiting mapping discrepancies

When the origin server uses a special mapping or doesn't normalize the path before generating the
response, it's possible to control the key used for stored resources. An classic example of this are
applications that have a self-reflected XSS when an non-existing endpoint is visited.

Consider the following request/response:

GET /<script>X</script>
 HTTP/1.1
Host: server.com

HTTP/1.1 404 Not Found
Content-Type: text/html
Cache-Control: public

Not Found /<script>X</script>

https://portswigger.net/kb/papers/7q1e9u9a/web-cache-poisoning.pdf
https://portswigger.net/kb/papers/7q1e9u9a/web-cache-poisoning.pdf
https://portswigger.net/kb/papers/c3wwniai/web-cache-entanglement.pdf


The malicious payload is part of the URL and is reflected in a cacheable response. However, a
valid user would never issue a request to /<script>X</script> if there is no interaction with
the attacker. Therefore, even if the response is also accessible through the encoded version
/%3Cscript%3EX%3C/script%3E (the key is decoded), the attacker will need to send a link to
the victim, just as in a reflected XSS scenario.

However, if the key is normalized, the following payload would poison a highly visited endpoint like
/home with the malicious response:

GET /<Backend_Path><Path_Traversal><Poisoned_Path>

URL Cache Proxy Origin Server

/<script>X</script>/../../home /home /<script>X</script>

The double dot-segment is used in this example as the payload already contains a slash. Adjust
the path traversal to resolve to the desired poisoned endpoint. The same technique can be applied
if a special mapping is used for the placeholder.

Exploiting back-end delimiters
When a character is used as a delimiter by the origin server but not by the cache, it's possible to
generate an arbitrary key for the cacheable resource. The delimiter will stop the backend from
resolving the dot-segment.

GET /<Backend_Path><Delimiter><Path_Traversal><Poisoned_Path>

URL Cache Proxy Origin Server

/payload$/../home /home /payload

Exploiting front-end delimiters
In web cache deception attacks, the parsing discrepancy was caused by a delimiter being used
only in the origin server but not in the cache. Finding a character with special meaning for the
cache server that can be sent through a browser is rare. However, as web cache poisoning doesn't
require user interaction, delimiters like the hash can create path confusion. This is useful because
fragments are interpreted differently by many HTTP servers, CDNs, and backend frameworks, as
shown in the tables below:



Therefore, in cases like Microsoft Azure, which normalizes the path and treats the hash as a
delimiter, it's possible to use this to modify the cache key of the stored resource:

GET /<Poisoned_Path><Front-End_Delimiter><Path_Traversal><Backend_Path>

URL Cache Proxy Origin Server

/home#/../payload /home /payload

This technique could be applied to any delimiter used by the cache. The only requirement is that
the key is normalized and the path is forwarded with the suffix after the delimiter.



Cache-What-Where
When auditing a website for a pentest or bug bounty program, it's common to find vulnerabilities
that aren't exploitable due to browser constraints and limitations. These issues require user
interaction and can't be sent through the browser because the request needs specific crafted
headers or characters in the URL that get encoded.

By combining these vulnerabilities with the previously described cache poisoning and deception
techniques, an attacker could exploit them and store a malicious payload in the cache.

For example, consider a website with an open redirect where the location is generated with an X-
Forwarded-Host header:

GET /home HTTP/1.1
Host: server.com
X-Forwarded-Host: evil.com

HTTP/1.1 302 Found
Location: http://evil.com/index.html

By itself, this redirect isn't stored in the cache, so it shouldn't be possible to poison the cache with
it. However, if there's a discrepancy between the cache key and backend parser, this 'unexploitable'
vulnerability could be escalated to a full domain takeover. For example, if the web application loads
the /main.js script on the homepage, we can poison the path in the cache and redirect the
browser to load a malicious script:

URL Cache Proxy Origin Server

/main.js#/../home /main.js home(with malicious header)

This forces the cache proxy into storing the redirect response to evil.com under the /main.js key.
When a victim loads the homepage and tries to access the /main.js resource, a malicious redirect
will obtain a JavaScript controlled by the attacker which will infect every user browser.

In an even worse scenario, the open redirect is stored due to a cache header:

GET /home HTTP/1.1
Host: server.com
X-Forwarded-Host: evil.com

HTTP/1.1 302 Found
Location: http://evil.com/index.html
Cache-Control: public, max-age=3600



In this case, the poisoned path wouldn’t need a static extension and the vulnerability could be
leveraged to complete arbitrary cache poisoning and full website defacement.

URL Cache Proxy Origin Server

/any_page#/../redirect /any_page redirect (cache-control public)

The same technique can be used with any other user interaction required or self reflected issue,
like a self-reflected and not-exploitable XSS.



Defence
The easiest way to protect against web cache deception is to mark all dynamically generated
responses with a Cache-Control header, set with the no-store and private directives. This
tells the web cache that the resource should never be stored.

It is also important to verify that the cache rules don't have priority over the Cache-Control
header. This can be configured in most CDNs. If it can't be configured, consider disabling the
caching rules or avoid using an origin server or framework that parses the URL differently to the
CDN.

To protect against cache key confusion make sure that the cache key isn't normalized and that the
suffix after a cache delimiter isn't forwarded to the application server. If this isn't possible, consider
switching to a different CDN or HTTP server that parses the URL in as similar a way as possible.

Takeaways
URL parsing discrepancies can be easily exploited using web cache poisoning and deception

Exploitation techniques that can be applied in countless systems and bug bounty programs

Chain web cache poisoning and deception to increase severity and obtain full site take over!
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