Server-Side Template Injection:
RCE for the modern webapp l' PORTSWIGGER

James Kettle - james.kettle@portswigger.net - @albinowax

Abstract

Template engines are widely used by web applications to present dynamic data via web pages and emails. Unsafely
embedding user input in templates enables Server-Side Template Injection, a frequently critical vulnerability that is
extremely easy to mistake for Cross-Site Scripting (XSS), or miss entirely. Unlike XSS, Template Injection can be used to
directly attack web servers' internals and often obtain Remote Code Execution (RCE), turning every vulnerable
application into a potential pivot point.

Template Injection can arise both through developer error, and through the intentional exposure of templates in an attempt
to offer rich functionality, as commonly done by wikis, blogs, marketing applications and content management systems.
Intentional template injection is such a common use-case that many template engines offer a 'sandboxed' mode for this
express purpose. This paper defines a methodology for detecting and exploiting template injection, and shows it being
applied to craft RCE zerodays for two widely deployed enterprise web applications. Generic exploits are demonstrated for
five of the most popular template engines, including escapes from sandboxes whose entire purpose is to handle user-
supplied templates in a safe way.

Outline

¢ Introduction

Methodology
o Detect
o Identify

o Exploit
Exploit Development

o FreeMarker
Velocity
o Smarty

o

o Twig

o Jade
e Case Studies

o Alfresco

o XWiki Enterprise
» Mitigations
¢ Conclusion

http://portswigger.net/
http://blog.portswigger.net/
https://twitter.com/albinowax
mailto:james.kettle@portswigger.net

Introduction

Web applications frequently use template systems such as Twig' and FreeMarker” to embed dynamic content in web
pages and emails. Template Injection occurs when user input is embedded in a template in an unsafe manner. Consider a
marketing application that sends bulk emails, and uses a Twig template to greet recepients by name. If the name is merely
passed in to the template, as in the following example, everything works fine:

|$output = $twig->render("Dear {first_ name},", array("first name" => Suser.first name)); |

However, if users are allowed to customize these emails, problems arise:

|$output = $twig->render($_GET['custom _email'], array("first name" => Suser.first name)); |

In this example the user controls the content of the template itself via the custom email GET parameter, rather than a
value passed into it. This results in an XSS vulnerability that is hard to miss. However, the XSS is just a symptom of a
subtler, more serious vulnerability. This code actually exposes an expansive but easily overlooked attack surface. The
output from the following two greeting messages hints at a server-side vulnerability:

custom email={{7*7}}

49

custom email={{self}}

Object of class
__ _TwigTemplate 7ae62e582f8a35e5eab6cc639800ecf15b96c0d6£78db3538221c1145580ca4a5 could not be
converted to string

What we have here is essentially server-side code execution inside a sandbox. Depending on the template engine used, it
may be possible to escape the sandbox and execute arbitrary code.

This vulnerability typically arises through developers intentionally letting users submit or edit templates - some template
engines offer a secure mode for this express purpose. It is far from specific to marketing applications - any features that
support advanced user-supplied markup may be vulnerable, including wiki-pages, reviews, and even comments. Template
injection can also arise by accident, when user input is simply concatenated directly into a template. This may seem
slightly counter-intuitive, but it is equivalent to SQL Injection vulnerabilities occurring in poorly written prepared
statements, which are a relatively common occurrence. Furthermore, unintentional template injection is extremely easy to
miss as there typically won't be any visible cues. As with all input based vulnerabilities, the input could originate from out
of band sources. For example, it may occur as a Local File Include (LFI) variant, exploitable through classic LFI
techniques such as code embedded in log files, session files®, or /proc/self/env*.

The 'Server-Side' qualifier is used to distinguish this from vulnerabilities in client-side templating libraries such as those
provided by jQuery and KnockoutJS. Client-side template injection can often be abused for XSS attacks, as detailed by
Mario Heiderich®. This paper will exclusively cover attacking server-side templating, with the goal of obtaining arbitrary
code execution.

https://code.google.com/p/mustache-security/
http://freemarker.org/
http://www.ush.it/2008/07/09/local-file-inclusion-lfi-of-session-files-to-root-escalation/
http://www.ush.it/2008/08/18/lfi2rce-local-file-inclusion-to-remote-code-execution-advanced-exploitation-proc-shortcuts/
http://twig.sensiolabs.org/

Template Injection Methodology

I have defined the following high level methodology to capture an efficient attack process, based on my experience
auditing a range of vulnerable applications and template engines:

Detect

|dentify

/

Attack

Detect
This vulnerability can appear in two distinct contexts, each of which requires its own detection method:
1. Plaintext context

Most template languages support a freeform 'text' context where you can directly input HTML. It will typically appear in
one of the following ways:

smarty=Hello {user.name}
Hello userl

freemarker=Hello ${username}
Hello newuser

any=Hello
Hello

This frequently results in XSS, so the presence of XSS can be used as a cue for more thorough template injection probes.
Template languages use syntax chosen explicitly not to clash with characters used in normal HTML, so it's easy for a
manual blackbox security assessment to miss template injection entirely. To detect it, we need to invoke the template
engine by embedding a statement. There are a huge number of template languages but many of them share basic syntax
characteristics. We can take advantage of this by sending generic, template-agnostic payloads using basic operations to
detect multiple template engines with a single HTTP request:

smarty=Hello ${7*7}
Hello 49

freemarker=Hello ${7*7}
Hello 49

